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ABSTRACT

This paper deals with some gencral non-lincar heating programmes which allow the temperature
integral to be solved cxactly. Some possible uses of these programmes are discussed.

One of the most important problems connected with non-isothermal kinetics
involves obtaining exact solutions for the temperature integral. Indeed. for the
heating of a sample at a constant rate a (a = dT7T/dr), the integral kinetic equation
has the form

Fa)= f f(a) f e~E/RT 4T (1)
or, neglecting as usual the lower limit, 7

A (T _EgmrT
F(a)=2 /; e dT (2)

The right-hand side of eqns. (1) and (2) is called the temperature integral. For the
given linear programme of heating this integral cannot be solved exactly [1].

In order to obtain exact solutions for the temperature integral, hyperbolic and
parabolic programmes of heating were used. These programmes are given by

dT/dt=a,T? (3)
1/T=b—a,t (4)
for the hyperbolic programme [2}, and

dT 1 E .

— = 5
dt b, 2RT+E (5)

RT?
by =g+ b T+c=1 (6)
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for the parabolic programme [3] (a,. b and c are constants for a given programme).
These equations may be used as starting points for working some more general
non-linear heating programmes. Thus. if instead of the value 2 for the temperature
exponent, one takes positive integers p. so as p = 2. eqn. (3) becomes
d7
dr
which defines a family of non-linear heating programmes for different values of p.
Equation (2). with the heating rate given by eqn. (7), takes the form
re E/RT

F(a)=§-/(; ~—5— dT (8)

=a,T" (7

where the temperature integral can now be solved exactly. In order to obtain the
solutior:.. one has to operate the usual change of variable

x=—E/RT (9)
In terms of the variable x. eqn. {8) can be written as

—(_ p_f*_(;@)”" Y peZaxds
F(a)=(—1) a \E f—x.\ e¥dux (10)

The integral
I=[xr=%evdx
can be calculated exactly through repeated integration by parts, with the result [4]
I=ex[xr=2 —(p—2)xr 3+ (p~2)(p—3x"""...
+ (=D p =+ (=D (p -2 (11)

Returning to the old variable by means of eqn. (9), eqn. (10) becomes

F("‘):("l)”%(%)”"”ev—f:/RT[(%)”"2’_(17_2)(%)""3’

(p—4
+(p—z)(p—3)(7f:7) ' +(—1)"’"‘(p—z)x{;+(—l)""2’(p—2)!}

(12)
Obviously. for p = 2, one gets
F(a)——-iﬁ g E/RT (13)
a, £

which is the particular form of eqn. (12) for the hyperbolic heating programme [2].
Equation (12) could be used in working integral methods for non-isothermal
Kkinetics, like the method given by Coats and Redfern [5].

Another family of non-linear heating programmes which allows the temperature
integral to be solved exactly may be obtained from the general form of eqn. (2)

F(a) =Af0Tf(T) e "E/RT QT (14)
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where
f(T)=

dT/dt | (15)

The problem involves the proper choice of a function f,(7) which has to fulfil the
condition {3]

ff(T)e—E/RTdT= f,(T) e E/RT (16)

where the right-hand side is implied by the form of the left-hand integrand.
Operating the derivative of both members in eqn. (16), one gets:

— E
f(T) = ((T) + == £(T) (17)
a condition which f,(7") has equally to fulfil. If f, is chosen as
__R
fl - azE (18)

from relationship (17), one gets eqn. (3) for the hyperbolic programme of heating.
For f,(T) given by

RT
f(T) = BE (19)
eqn. (17) leads to

R 1
f(T)= BE + s (20)
or, taking into account eqn. (15) and integrating eqn. (20), it turns out that
t=b,%+bllnT+c (21)

where b, =1/b.

Equations (20) and (21) define a new heating programme which allows an-:exact
solution of the temperature integral. Taking into account eqns. (19) and (16), eqn.
(14) takes the form

R
F(a) =%ETe—E/RT (22)

whose logarithmic form could be used to determine the activation energy and the
pre-exponential factor. These two kinetic parameters are easy to evaluate from the
slope and the intercept of the straight line (log F(«)/T, 1/T).

Equation (17) with

RT?
leads to [3]
2RT 1
£(T) _——EE—+Z (24)
and
RT?
E b,+b,T+c=1t (25)
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where b, = 1/b, i.e. to a parabolic heating programme. For this programme, the
integral kinetic equation (14) takes the particular form '
F(a) =52 77 e™/%7 (26)
This allows evaluation of £ and A from the slope and the intercept of the straight
line (log F(a)/T2, 1/T).

Equation (17) with the general function f,(7T") given by

RT™
where m is a positive integer (m = 2) becomes
n RTm—l Tm—l
f(T)= bE + 5 (28)
By integration of eqn. (28), one gets
RT"' Tm—l
t=b—p—+b—T+c (29)

where b, =1/b. Equations (28) and (29) define another family of non-linear

programmes which lead to exact solutions of the temperature integral. In this case,

from eqns. (14), (16) and (17), it turns out that

Fla) = A5 e =#/RT (30)

the logarithmic form of which could be used to evaluate E and 4 in the usual way.
One more family of non-linear programmes which allow an exact solution of the

temperature integral can be obtained for a function f((7) given by:

f(T)=T9e*T (31)

where ¢q is a positive integer and k& is a constant. Taking into account eqn. (31), eqn.
(17) becomes

f(T)=¢qT9 ' e*T + kT9 e"'T-i--%T"—z erT (32)
By integration with respect to temperature, the first two terms give T9%*7. As for the
integral of the last term, this is (E/R) I, where I is given by eqn. (11). Thus, the
integration of eqn. (32) leads to

— —_ -3 — —
t = k7| T4 +_E_( 7972 _(9=97T77° (9=2)(¢—3) .
R k k2 k3
a(g=2)! (=13 g—-2)
+(_1)¢7 3 (qk"_z) + ( ; knf‘l] ) )] (33)
with g = 2.

For f,(T) given by eqn. (31), eqn. (14) takes the form
Fla) =AT7 kT e ~E/RT ' (34)
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Although the three families of non-linear heating programmes mentioned above
are mainly suitable for the integral methods in non-isothermal kinetics, they can also
be used to work out differential methods. Thus, for the heating rate (7), through
generalization of the formulae given for p = 2'2, one gets

2 fl
da=_£+ E (a)g (35)
dadT T RTZ, f(a) AT
(i) =pRTmnx_E f(amax) (36)
dT / max RT2,  F(ema)
d ln aanl:a_;z _ E (37)

d|=— - R

All these equations lead to variants of the classical differential methods for evaluat-
ing the kinetic parameters under non-isothermal conditions [1,6].
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